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Abstract: In earlier work, we derived an expression for a partition functionZ(λ), and
gave a set of analytic hypotheses under whichZ(λ) does not depend on a parameterλ.
The proof thatZ(λ) is invariant involved entire cyclic cohomology andK-theory. Here
we give a direct proof thatd

dλ
Z(λ) = 0. The considerations apply to non-commutative

geometry, to super-symmetric quantum theory, to string theory, and to generalizations
of these theories to underlying quantum spaces.

1. Introduction

In [QHA] we studied a class of geometric index invariants, in (non-commutative) dif-
ferential geometry [C1, C2, JLO]. These invariants arise from pairing a cocycleτλ,g in
(equivariant) entire cyclic cohomology, with an operator square-root of unitya. In [JLO]
we discovered a representationτ JLO of a cocycle defined in terms of a given self-adjoint
operatorQ(λ), yielding Zλ(a, g) = ZQ(λ)(a, g) = 〈

τλ,g, a
〉
. In [QHA] we study a

modification of this pairing, and extend the class of perturbations ofQ(λ) under which
the invariants are stable, formulating a sufficient condition offractional differentiability.
The index studied in [QHA] has the numerical value

ZQ(λ)(a, g) = 1√
π

∫ ∞

−∞
Tr H(γU(g)ae−Q(λ)2+itdλa)e−t2

dt, (1.1)

whereQ(λ) acts on a Hilbert spaceH, and the differentialda = dλa is defined by
da = [Q(λ), a]. We assume thatQ is odd with respect to theZ2-gradingγ , while a is
even. We also assume thatg is an element of a groupG of symmetries ofQ and ofa.
The invariantZQ(a, g) does not necessarily take integer values, but it is integer in case
g equals the identity.
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National Science Foundation under Grant DMS-94-24344.



2 A. Jaffe

In this note we present an elementary analysis of the invariance of (1.1). Rather
than relatingZ to cohomology orK-theory, we study the end result of that analysis.
We ask: can one show directly thatZQ(λ)(a, g) is constant? We answer this question
affirmatively, by introducing an auxiliary Hilbert spacêH that is a skew tensor-product
of H with a finite dimensional space. We obtain a representation forZ as an expectation
J(λ, a, g) on Ĥ. Therefore we replace the study ofQ(λ) acting onH by the study of
q(λ, a) = Q(λ) + ηa acting onĤ. Using the identityZQ(λ)(a, g) = J(λ, a, g), it
becomes an elementary calculation to establish thatd

dλ
ZQ(λ)(a, g) = 0.

The Hilbert spaceĤ differs fromH by also containing the additional independent
fermionic coordinateη chosen so thatη2 = I , ηa = aη, andηQ(λ) + Q(λ)η = 0. We
interpretηa as a connection associated with the translation in the auxiliary directiont ,
paired with the fermionic coordinateη.

We present the algebraic aspects of the proof, without the analytic details. These
analytic details remain absolutely crucial, and without them we would be in the position
to show that all invariants for a givena agree! For example, if any two oddQ andQ̃ both
commute with the symmetry groupU(g), then we could takeQ(λ) = λQ+(1−λ)Q̃ and
attempt to interpolate between them for 0≤ λ ≤ 1. However the analytic assumptions
we require differ little from those in [QHA], and in fact they comprise a major portion
of that work. First we define the regularity ofQ(λ) with respect toλ, and secondly we
investigate the regularity ofa with respect to commutation withQ(λ). We call the latter
the fractional differentiabilityproperties ofa. The conditions in [QHA] are convenient
in many examples, and we summarize our analytic hypotheses in Sect. 11. Under these
regularity conditions,ZQ(λ)(a, g) is once-differentiable inλ. Furthermore, the resulting
λ-derivative ofZ equals the expression that we would obtain by interchanging the order
of differentiating and the order of taking traces or integrals in the definition ofZ.

In Sect. 10 we consider a different but related case with two independent differentials
Q1 andQ2. While we assume thatQ1 is invariant under the symmetry groupG, we do
not assume the invariance ofQ2. We replace this assumption by the two assumptions,
namely both thatQ2

2 is invariant, and thatQ2
1 − Q2

2 commutes with all observables. We
show in this case that an expectation (10.4) has a representation similar to (1.1) and also
is an invariant with respect toλ.

2. The Supercharge

Our basic framework involves an odd, self adjoint operatorQ on aZ2-graded Hilbert
spaceH. This means that we have a self-adjoint operatorγ on H for which γ 2 = I .
ThusH splits into the direct sumH = H+ ⊕ H− of eigenspaces ofγ . The statement
thatQ is odd meansQγ + γQ = 0. In terms of the direct sum decomposition,

Q =
(

0 Q∗+
Q+ 0

)
andγ =

(
I 0
0 −I

)
. (2.1)

The operatorQ is the supercharge1 and its square

H = Q2 =
(

Q∗+Q+ 0
0 Q+Q∗+

)
(2.2)

1 We are not concerned with the basic structure ofH or Q, aside from the possibility to perform the
construction in §V.
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will be referred to as the Hamiltonian. We letxγ = γ xγ denote the action ofγ on
operators. We say that the operatorx is even (bosonic) ifx = xγ and odd (fermionic) if
xγ = −x. We define the graded differential

dx = Qx − xγ Q. (2.3)

We suppose that there is a compact Lie groupG with a continuous unitary represen-
tationU(g) onH such that

U(g)γ = γU(g), and U(g)Q = QU(g). (2.4)

Denote the action ofU(g) on the operatorx by

x → xg = U(g)xU(g)−1. (2.5)

3. The Observables

Consider an algebra of bounded operatorsA onH such that eacha ∈ A is even andg-
invariant. In other words, eacha ∈ A commutes withγ and withU(g) for allg ∈ G.Also
consider Matn(A), the set ofn×n matrices with matrix elements inA. If a ∈ Matn(A),
thena = {aij }, whereaij ∈ A. Use the shorthandab ∈ Matn(A) to denote the matrix
with entries(ab)ij = ∑n

k=1 aikbkj ∈ A. Define the differential of a elementa ∈ A by

da = Qa − aQ = [Q, a]. (3.1)

This is always densely defined as a quadratic form onH × H. We make precise the
boundedness properties of this quadratic form in Sect. 11. We usea to denote an element
of the algebraA andx to denote a linear operator or a bilinear form acting onH. In the
latter case, we assume that the domain ofx includesC∞(Q(λ)) × C∞(Q(λ)).

4. The Invariant ZQ(λ)(a, g)

In [QHA] we gave a simple formula for an invariant. LetQ(λ) depend on a real parameter
λ. We denote the graded commutator (2.3) ofQ(λ) with x by

dλx = Q(λ)x − xγ Q(λ), (4.1)

that reduces todλa = [Q(λ), a] for a ∈ A. For a ∈ A, the invariant is (1.1). More
generally, we leta ∈ Matn(A). In this case

ZQ(λ)(a, g) = 1√
π

∫ ∞

−∞
Tr H⊗Cn2

(
γU(g)ae−Q(λ)2+itdλa

)
e−t2

dt , (4.2)

whereγ, U(g), Q(λ)2 act in Matn(A) as diagonaln × n matrices of the formγ ⊗ I ,
U(g) ⊗ I , etc.

Theorem 1.For a ∈ Matn(A), assumea2 = I . Furthermore assume thatQ = Q(λ)

anddλa = [Q(λ), a]satisfy the regularity hypotheses given in Sect. 11.ThenZQ(λ)(a, g)

is independent ofλ.

The main point of this paper is to present an elementary proof of Theorem 1.
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5. The Extended Superchargeq

In order to exhibit our proof, we introduce a new Hilbert spaceĤ on which the operators
Q, γ, A, andU(g) also act. In addition, onĤ there are two additional self adjoint
operatorsη andJ , both of which have square one,

η2 = J 2 = I. (5.1)

Furthermore, we assume thatη commutes withγ , with all elements ofA, and with the
representationU(g). In other words,

[η, x] = [J, x] = 0 for x = γ, a ∈ A, or U(g). (5.2)

Also we assume thatJ commutes withQ, but thatη anticommutes withJ and withQ,

ηJ + Jη = ηQ + Qη = [J, Q] = 0. (5.3)

Let0 = γ J denote aZ2-grading onĤ. We now letx denote a linear operator or bilinear
form acting onĤ (in the latter case, with domain includingC∞(Q(λ)) × C∞(Q(λ))

x0 = 0x0. (5.4)

The operatorη is our auxiliary fermionic coordinate, andJ = (−I )Nη is the correspond-
ing Z2 grading.2

Givena ∈ A, define the extended superchargeq = q(λ, a) by

q = q(λ, a) = Q(λ) + ηa, (5.5)

and also let

h = h(λ, a) = q(λ, a)2 = Q(λ)2 + a2 − ηdλa. (5.6)

Note that

q0 = −q, andh0 = h. (5.7)

We use the notationdq to denote the0-graded commutator on̂H,

dqx = qx − x0q. (5.8)

If we need to emphasize the dependence ofq on λ or a, then we writedq(λ,a)x. We
continue to reserved or dλ to denote theγ -graded commutator (4.1).

2 Suppose thatH = Hb ⊗Hf is a tensor product of bosonic and fermionic Fock spaces, thatQ is linear in

fermionic creation or annihilation operators, and thatγ = (−I )
Nf . This would be standard in the physics of

supersymmetry. Suppose in addition thatη = b+b∗ denotes one fermionic degree of freedom independent of
those inHf and acting on the two-dimensional spaceHη. Then takeĤ = Hb⊗(Hf ∧Hη) andJ = (−I )b

∗b,

with Q, γ, a, andU(g) acting onĤ in the natural way. This gives a realization of (V.1–3) onĤ.
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6. Heat Kernel Regularization onĤ

Let us introduce the heat kernel regularizationsX̂n of Xn onĤ. LetXn = {x0, . . . , xn}
denote an ordered set of(n + 1) linear operatorsxj acting onĤ. We call thexj vertices
andXn a set of vertices. Choosea ∈ A and letq(λ, a) = Q(λ)+ηa, andh = h(λ, a) =
q(λ, a)2. Define the heat kernel regularizationX̂n(λ, a) = {x0, . . . , xn}∧(λ, a) by

X̂n(λ, a) =
∫

sj >0
x0e

−s0hx1e
−s1h · · · xne

−snhδ(1 − s0 − · · · − sn)ds0 · · · dsn. (6.1)

Note that ifT is any operator on̂H that commutes withh = q2, then

{x0, . . . , xjT , xj+1, . . . , xn}∧(λ, a) = {x0, . . . , xj , T xj+1, . . . , xn}∧(λ, a). (6.2)

FurthermoreT = Jη anti-commutes withq(λ, a) and commutes withh(λ, a) for all a.

Proposition 2 (Vertex Insertion).LetXn = {x0, . . . , xn}denote a set of vertices possibly
depending onλ. Then with the notatioṅQ = ∂Q(λ)/∂λ, we have

∂

∂λ
{x0, . . . , xn}∧(λ, a) = −

n∑
j=0

{x0, . . . , xj , dqQ̇, xj+1, . . . , xn}∧(λ, a)

+
n∑

j=0

{x0, . . . ,
∂xj

∂λ
, . . . , xn}∧(λ, a). (6.3)

Here

dqQ̇ = dq(λ,a)Q̇ = dλQ̇ + η[a, Q̇]. (6.4)

Proof. By differentiatingX̂n defined in (6.1), we obtain two types of terms. Differ-
entiating thexj ’s gives the second sum in (6.3). (This sum is absent if thexj ’s are
λ-independent.) The other terms arise from differentiating the heat kernels. We use the
identity

∂

∂λ
e−sh = −

∫ s

0
e−uh ∂h

∂λ
e−(s−u)hdu, (6.5)

that holds under suitable regularity hypotheses, see for example Proposition VII.10 of
[QHA]. Here

∂h

∂λ
= ∂

∂λ
(q2) = q

∂q

∂λ
+ ∂q

∂λ
q = dq

(
∂q

∂λ

)
= dqQ̇.

Explicitly
dqQ̇ = (Q + ηa)Q̇ + Q̇(Q + ηa) = dλQ̇ + η[a, Q̇].

Inserted back into the definition of̂Xn, we observe that the differentiation of the heat
kernel between vertexj and vertexj + 1 produces one new−dqQ̇ vertex at position
j + 1. This completes the proof of (6.3).ut
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Define the action of the grading0 on sets of verticesXn by

Xn → X0
n = {x0

0 , x0
1 , . . . , x0

n }. (6.6)

Sinceq2 = (q0)2, the regularizationXn → X̂n commutes with the action of0, namely
(
X̂n(λ, a)

)0 = (
X0

n

)∧
(λ, a). (6.7)

It is also convenient to write explicitly the expression for the differentialdqX̂n,

dqX̂n(λ, a) = qX̂n(λ, a) − X̂n(λ, a)0q

= {qx0, x1, . . . , xn}∧(λ, a) − {x0
0 , . . . , x0

n q}∧(λ, a). (6.8)

In particular, we infer that

dqX̂n(λ, a) =
n∑

j=0

{x0
0 , x0

1 , . . . , x0
j−1, dqxj , . . . , xn}∧(λ, a). (6.9)

One other identity we mention is

Proposition 3 (Combination Identity). The heat kernel regularizations satisfy

{x0, x1, . . . , xn}∧(λ, a) =
n∑

j=0

{x0, x1, . . . , xj , I, xj+1, . . . , xn}∧(λ, a). (6.10)

Proof. Thej th term on the right side of (6.9) is

{x0, . . . , xj , I, xj+1, . . . , xn}∧(λ, a)

=
∫

sj >0
x0e

−s0h · · · xj e
−(sj +sj+1)h

· · · xne
−sn+1hδ(1 − s0 − · · · − sn+1)ds0 · · · dsn+1. (6.11)

Change thes-integration variables tos′
0 = s0, s

′
1 = s1, . . . , s′

j = sj + sj+1, s′
j+1 =

sj+2, . . . , s′
n = sn+1, ands′

n+1 = sj . This change has Jacobian 1, and the resulting
integrand has the form of the integrand for{x0, . . . , xn}∧ with variabless′

0, . . . , s′
n,

namely∫
s′
0,s

′
1,... ,s

′
n>0

ds′
0 · · · ds′

n

(∫
ds′

n+1x0e
−s′

0h · · · xne
−s′

nhδ(1 − s′
0 − · · · − s′

n)

)
,

(6.12)

with the integrand depending on the variables′
n+1 only through the restriction of the

range of thes′
n+1 integral. The original domain of integration restrictss′

n+1 to the range
0 ≤ s′

n+1 ≤ s′
j , so the dependence of the integrand ons′

n+1 is the characteristic function
of the interval[0, s′

j ]. Thus performing thes′
n+1 integration produces a factors′

j in
the s′

0, . . . , s′
n-integrand. Add the similar results for 0≤ j ≤ n to give the factor

s′
0 + s′

1 + · · · s′
n. But the delta function in (6.12) restricts this sum to be 1, so the integral

of the sum is exactly{x0, . . . , xn}∧(λ, a). ut
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7. Expectations onĤ

Let a ∈ A satisfya2 = I , and letX̂n = X̂n(λ, a) denote the heat kernel regularization
of Xn. We define the expectation

〈〈
X̂n

〉〉
λ,a,g

= 1√
4π

∫ ∞

−∞
Tr Ĥ

(
0U(g)X̂n(λ, ta)

)
dt. (7.1)

Here we choosea2 = I to ensure that thet2 term inh provides a gaussian convergence
factor to thet-integral. This integral represents averaging overa’s whose squares are
multiples of the identity.

These expectations can be considered as(n + 1)-multilinear expectations on setsXn

of vertices. We sometimes suppress theλ- or a- or g-dependence of the expectations, or
then-dependence of sets of vertices. Furthermore, where confusion does not occur we
omit the∧ that we use to distinguish a set of verticesX from the heat kernel regularization

of the set. Thus at various times we denote
〈〈

X̂n

〉〉
a,g

by 〈〈X〉〉, or when we wish to clarify

the dependence onn, a, or g with some subset of these indices, or even as one of the
following:

〈〈
X̂n

〉〉
λ,a,g

= 〈〈X〉〉 = 〈〈X〉〉n = 〈〈X〉〉n,a = 〈〈X〉〉n,a,g , (7.2)

etc.

Proposition 4.With the above notation, we have the identities

(0-invariance) 〈〈X〉〉n = 〈〈
X0

〉〉
n
, (7.3)

(differential) 〈〈
dqX

〉〉
n

=
n∑

j=0

〈〈{
x0

0 , x0
1 , . . . , x0

j−1, dqxj , . . . , xn

}〉〉
, (7.4)

(cyclic symmetry)
〈〈{x0, x1, . . . , xn}〉〉 =

〈〈{
x

g−10
n , x1, x2, . . . , xn−1

}〉〉
, (7.5)

and

(combination identity)

〈〈{x0, x1, . . . , xn}〉〉n =
n∑

j=0

〈〈{
x0, x1, . . . , xj , I, xj+1, . . . , xn

}〉〉
n+1 . (7.6)

Also, in caseQ = Qg anda = ag, thenq = qg and we have

(infinitesimal invariance) 〈〈
dq(λ,ta)X

〉〉 = 0. (7.7)
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Proof. The symmetry (7.3) is a consequence of the fact that02 = I , and0 commutes
with U(g) and withq2. The expectation of (6.9) completes the proof of (7.4). The proof
of (7.5) involves cyclicity of the trace. The identity (7.6) is the expectation of (6.10).
To establish (7.7), note that everyX̂n can be decomposed uniquely asX̂n = X̂+

n + X̂−
n ,

where
(
X̂±

n

)0 = ±X̂±
n . The symmetry (7.3) ensures that

〈〈
dq(λ,ta)X

+
n

〉〉 = 0. On the

other hand,q0 = −q, together with cyclicity of the trace andqg = q ensures that

〈〈
dq(λ,ta)X

−
n

〉〉 = 〈〈
q(λ, ta)X−

n

〉〉 + 〈〈
X−

n q(λ, ta)
〉〉

= 〈〈
q(λ, ta)X−

n

〉〉 + 〈〈
q(λ, ta)g

−10X−
n

〉〉
= 0. ut

Except in (7.7), we have implicitly assumed that the verticesxj in Xn aret-independent.
In case thatXn has one factor linear int , the heat kernel regularizations of the following
agree:

{tx0, x1, . . . , xn}∧ (λ, ta) = {
x0, x1, . . . , txj , . . . , xn

}∧
(λ, ta) , (7.8)

for anyj = 0, 1, . . . , n. We then obtain an interesting relation for expectations,

Proposition 5 (Integration by parts). Leta2 = I . Then

〈〈{tx0, x1, . . . , xn}〉〉n =
n∑

j=0

1

2

〈〈{
x0, . . . , xj , ηdλa, xj+1, . . . , xn

}〉〉
n+1 . (7.9)

Proof. In order to establish (7.9), we collect together the terms exp(−sj t
2) that occur

in {x0, . . . , xn}∧ (ta). Since the integrand for the heat kernel regularization has aδ-
function restricting the variablessj to satisfys0 + · · · + sn = 1, we obtain the factor
exp(−t2). Write

te−t2 = −1

2

d

dt

(
e−t2

)

and integrate by parts int . The resulting derivative involves thet-derivative of each heat
kernel exp−(sj q(λ, ta)2) with the quadratic term int removed fromq2. Note that

e−st2 d

dt
e−s(q2−t2) = −

∫ s

0
e−uq2

(
d

dt
(q2 − t2)

)
e−(s−u)q2

du

=
∫ s

0
e−uq2

ηdλae−(s−u)q2
du.

Here we use (5.6) withta replacinga and witha2 = I in order to evaluate thet derivative
of q2 − t2. Thus each derivative introduces a new vertex equal to1

2ηdλa, and the proof
of (7.9) is complete. ut
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8. The FunctionalJ(λ, a, g)

Let us consider a single vertex andX0 = x0 = Ja, wherea ∈ A, and its expectation

J(λ, a, g) = 〈〈Ja〉〉 . (8.1)

Explicitly

J(λ, a, g) = 1√
4π

∫ ∞

−∞
Tr Ĥ

(
γU(g)ae−q(λ,ta)2

)
dt. (8.2)

This functional allows us to recover the functionalZ.

Theorem 6.Leta satisfya2 = I . Then

J(λ, a, g) = ZQ(λ)(a, g). (8.3)

Proof. Let h = h0 − tηda, whereh0 = Q(λ)2 + t2. The Hille–Phillips perturbation
theory for semi-groups, see Theorem 13.4.1 of [HP], can be written

e−q(λ,ta)2 = e−h0+tηda

= e−h0 +
∞∑

n=1

tn
∫

sj >0
e−s0h0ηdλae−s1h0ηdλa

· · · ηdλae−snh0δ(1 − s0 − s1 − · · · − sn)ds0ds1 · · · dsn. (8.4)

In thenth term we collect all factors ofη on the left. Note thatη commutes witha and
h0, and it anti-commutes withdλa. Therefore the result of collecting the factors ofη on
the left isηn(−1)n(n−1)/2. If n is odd, thenηn = η and TrHη

(η) = 0. Thus only even
n terms contribute to (8.2). For evenn, ηn(−1)n(n−1)/2 = (−1)n/2I and TrHη

(I ) = 2.
Thus (8.2) becomes

J(λ, a, g) = 1√
π

∫ ∞

−∞
dt

∞∑
n=0

(−t2)n 〈{a, dλa, . . . , dλa}〉2n e−t2
, (8.5)

where we use expectations〈 〉n onH similar to〈〈 〉〉n onĤ (but without thet-integration)
and defined by

〈{x0, . . . , xn}〉n =
∫

sj >0
Tr H

(
γU(g)x0e

−s0Q(λ)2 · · · xne
−snQ(λ)2

)

· δ(1 − s0 − s1 − · · · − sn)ds0ds1 · · · dsn. (8.6)

But using the Hille–Phillips formula once again, (8.6) is just

1√
π

∫ ∞

∞
dtTr H

(
γU(g)ae−Q(λ)2+itdλa

)
e−t2 = ZQ(λ)(a, g). (8.7)

(Here we use the symmetry of (8.7) underγ to justify vanishing of terms involving odd
powers ofdλa.) Thus we can prove thatZQ(λ)(a, g) is independent ofλ by showing that
J(λ, a, g) is constant inλ. ut
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9. (J(λ, a, g) Does Not Depend onλ

We now prove Theorem 1. Calculate∂J/∂λ using (6.3), in the simple case of one vertex
independent ofλ. Thus

∂

∂λ
J(λ, a, g) = ∂

∂λ
〈〈Ja〉〉 = − 〈〈{

Ja, dq(λ,ta)Q̇
}〉〉

. (9.1)

Using the identity (7.7) in the form

0 = 〈〈
dq(λ,ta)

{
Ja, Q̇

}〉〉 = 〈〈{
dq(λ,ta)(J a), Q̇

}〉〉 + 〈〈{
Ja, dq(λ,ta)Q̇

}〉〉
, (9.2)

we have

∂

∂λ
J(λ, a, g) = 〈〈{

dq(λ,ta)(J a), Q̇
}〉〉

. (9.3)

It is at this point that we have usedqg = q, namely the invariance of bothQ anda under
U(g). To evaluate (9.3), note that

dq(λ,ta)(J a) = [q(λ, ta), Ja] = Jdλa − 2tJ η. (9.4)

Here we use the assumptiona2 = I . From Proposition V we therefore infer

∂

∂λ
J(λ, a, g) = 〈〈{

Jdλa, Q̇
}〉〉 − 2

〈〈{
tJ η, Q̇

}〉〉
= 〈〈{

Jdλa, Q̇
}〉〉 − 〈〈{

Jη, ηdλa, Q̇
}〉〉 − 〈〈{

Jη, Q̇, ηdλa
}〉〉

. (9.5)

SinceJη commutes withh = q2, and sinceJηQ̇ = −Q̇Jη, use (6.2) to establish〈〈{
Jη, ηdλa, Q̇

}〉〉 + 〈〈{
Jη, Q̇, ηdλa

}〉〉 = 〈〈{
I, Jdλa, Q̇

}〉〉 − 〈〈{
I, Q̇, Jdλa

}〉〉
= 〈〈{

Jdλa, Q̇, I
}〉〉 + 〈〈{

Jdλa, I, Q̇
}〉〉

. (9.6)

In the last step we also usėQ0 = −Q̇ and the cyclic symmetry (7.5). Hence we can
simplify (9.6) to

〈〈{
Jdλa, Q̇

}〉〉
, by applying the combination identity (7.6). Substituting

this back into (9.5), we end up with

∂

∂λ
J(λ, a, g) = 〈〈{

Jdλa, Q̇
}〉〉 − 〈〈{

Jdλa, Q̇
}〉〉 = 0. (9.7)

ThusJ(λ, a, g) is invariant under change ofλ, and the demonstration is complete.ut

10. Independent SuperchargesQj(λ)

Let us generalize our consideration to the case that there are two self-adjoint operators
Q1 = Q1(λ) andQ2 = Q2(λ) onH such that

Q1γ + γQ1 = Q2γ + γQ2 = Q1Q2 + Q2Q1 = 0. (10.1)

Thus we have two derivativesdja = [Qj, a]. We assume that the energy operator onH
is defined by

H = H(λ) = 1

2
(Q1 + Q2)

2 = 1

2

(
Q2

1 + Q2
2

)
(10.2)
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and that the operator

P = 1

2

(
Q2

1 − Q2
2

)
(10.3)

has the properties:

i) P does not depend onλ.
ii) P commutes withQ1, Q2 and with eacha ∈ A.
iii) U(g) commutes withQ1 and withH(λ).

Assumption (i) corresponds to a common situation whereP can be interpreted as a
“momentum” operator. Then the energy, but not the momentum, is assumed to depend
on λ. Assumption (ii) says thatQ1, Q2 are translation invariant, and thatA is a “zero-
momentum” or translation-invariant subalgebra. According to assumption (iii),U(g)

commutes withQ2
2, but U(g) may not commute withQ2. Under these hypotheses,

and with appropriate regularity assumptions, we proved in [QHA] that fora = ag and
a2 = I ,

Z{Qj (λ)}(a, g) = 1√
π

∫ ∞

−∞
Tr

(
γU(g)ae−H+itd1a−t2

)
dt (10.4)

is independent ofλ. In this section we give an alternate proof that (10.4) is constant.
Introduce onĤ two extended superchargesq1 = q1(λ, a) = Q1 + ηa andq2 = Q2.

With η as before,ηQ1 + Q1η = ηQ2 + Q2η = 0. Define

h = h(λ, ta) = H(λ) + t2a2 − tηd1a. (10.5)

Note that

h = q1(λ, ta)2 − P = Q1(λ)2 + t2a2 − tηd1a − P , (10.6)

so we can eliminateQ2(λ) from h by introducing the operatorP , that commutes with
a, γ , J , U(g), η, andQj(λ).

ThusP commutes with all operators that we consider onĤ, so we repeat the con-
structions of Sects. 5–9. However, we replaceq(λ, ta)2 in the previous construction
with h(λ, ta) defined by (10.5). Also we replacedqx with dqj

x = qjx − x0qj . We
use the heat kernel exp(−sh) to define the heat kernel regularization. Then define the
expectation〈〈·〉〉 by the formula (7.1) with this newh(λ, ta). As q1 = q

g
1 , therefore we

have 〈〈
dq1(λ,ta)X

〉〉 = 0. (10.7)

However it may not be true thatq2 = q
g
2 , so it may not be true that

〈〈
dq2(λ,ta)X

〉〉
vanishes.

As before, witha2 = I , define

J(λ, a, g) = 〈〈Ja〉〉 . (10.8)

In this case, we establish as in the proof of Theorem 6 that

J(λ, a, g) = ZQj (λ)(a, g). (10.9)

Thus the proof of Theorem 1 shows:

Theorem 7.Let a ∈ A, assumea2 = I , and also assume the regularity hypotheses on
Qj(λ) andd1a = [Q1(λ), a], stated in Sect. 11. Then the expectationZQj (λ)(a, g) is
independent ofλ.
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11. Regularity Hypotheses

As explained in the introduction, our results depend crucially on some regularity hy-
potheses. In order forZ to exist, we assumee−H(λ) = e−Q(λ)2

exists and is trace class
onH. We give sufficient conditions to ensure this, as well as to ensure the validity of the
results claimed in Sects. 1–9. The content of Sect. 10 requires only minor modification
of these hypotheses. We have explored the consequences of these hypotheses in [QHA].

1. The operatorQ is self-adjoint onH, odd with respect toγ , ande−βQ2
is trace class

for all β > 0.
2. Forλ ∈ 3, where3 is an open interval on the real line, the operatorQ(λ) can be

expressed as a perturbation ofQ in the form

Q(λ) = Q + W(λ). (11.1)

EachW(λ) is a symmetric operator on the domainD = C∞(Q).
3. Letλ lie in any compact subinterval3′ ⊂ 3. The inequality

W(λ)2 ≤ aQ2 + bI, (11.2)

holds as an inequality for forms onD × D. The constantsa < 1 andb < ∞ are
independent ofλ in the compact set3′ ⊂ 3.

4. Let R = (Q2 + I )−1/2. The operatorZ(λ) = RW(λ)R is bounded uniformly for
λ ∈ 3′, and the difference quotient

Z(λ) − Z(λ′)
λ − λ′ (11.3)

converges in norm to a limit asλ′ → λ ∈ 3′ ⊂ 3.
5. The bilinear formdλa satisfies the bound

‖RαdλaRβ‖ < M, (11.4)

with a constantM independent ofλ for λ ∈ 3′. Hereα, β are non-negative constants
andα + β < 1.

In certain examples we are interested in the behavior ofJ(λ, a, g) asλ tends to the
boundary of3. In this case, we may establish the constancy ofJ with estimates that are
weaker than (1–5) at the endpoint of3, by directly proving the existence and continuity
of J at the endpoint. We study one such example in [HE], though other types of endpoint
singularities are also of interest (often involving aλ → ∞ limit).
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