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Abstract: In earlier work, we derived an expression for a partition funcgéh, and

gave a set of analytic hypotheses under wigéh does not depend on a parameter

The proof tha3™ is invariant involved entire cyclic cohomology art-theory. Here

we give a direct proof thafxs(“ = 0. The considerations apply to non-commutative
geometry, to super-symmetric quantum theory, to string theory, and to generalizations
of these theories to underlying quantum spaces.

1. Introduction

In [QHA] we studied a class of geometric index invariants, in (non-commutative) dif-
ferential geometry [C1, C2, JLO]. These invariants arise from pairing a cocyden
(equivariant) entire cyclic cohomology, with an operator square-root of unity[JLO]

we discovered a representatiolt© of a cocycle defined in terms of a given self-adjoint
operatorQ (1), yielding 3*(a, g) = 3% (a,g) = (t*¢,a). In [QHA] we study a
modification of this pairing, and extend the class of perturbation@@$ under which

the invariants are stable, formulating a sufficient conditiofmaxdtional differentiability.

The index studied in [QHA] has the numerical value

1 © .
3@ =— f Tr g (yU (g)ae™ QW Hitdiay,~ gy (1.2)
T J-co

where Q(1) acts on a Hilbert spac#, and the differentialla = da is defined by

da = [Q()), a]. We assume thaD is odd with respect to thé,-gradingy, while a is
even. We also assume thats an element of a grou@ of symmetries ofQ and ofa.

The invariant3 2 (a, g) does not necessarily take integer values, but it is integer in case
g equals the identity.
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National Science Foundation under Grant DMS-94-24344.
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In this note we present an elementary analysis of the invariance of (1.1). Rather
than relating3 to cohomology orK -theory, we study the end result of that analysis.
We ask: can one show directly thg€™* (a, g) is constant? We answer this question
affirmatively, by introducing an auxiliary Hilbert spagéthat is a skew tensor-product
of H with a finite dimensional space. We obtain a representatio fts an expectation
I, a,g)on #. Therefore we replace the study @f() acting on# by the study of
g(A,a) = QL) + na acting on?{. Using the identity32® (a, g) = J(A, a, g), it
becomes an elementary calculation to establish$h32™ (a, g) = 0.

The Hilbert spacé% differs from # by also containing the additional independent
fermionic coordinate) chosen so thaj? = I, na = an, andnpQ(L) + Q(A)n = 0. We
interpretna as a connection associated with the translation in the auxiliary diregtion
paired with the fermionic coordinate

We present the algebraic aspects of the proof, without the analytic details. These
analytic details remain absolutely crucial, and without them we would be in the position
to show that all invariants for a givenagree! For example, if any two od@landQ both
commute with the symmetry grodp(g), then we could tak@ (1) = A0 +(1—1)Q and
attempt to interpolate between them forOL < 1. However the analytic assumptions
we require differ little from those in [QHA], and in fact they comprise a major portion
of that work. First we define the regularity ¢f(x) with respect to., and secondly we
investigate the regularity af with respect to commutation wit@ (1). We call the latter
thefractional differentiabilityproperties ofi. The conditions in [QHA] are convenient
in many examples, and we summarize our analytic hypotheses in Sect. 11. Under these
regularity conditions32™ (a, g) is once-differentiable in. Furthermore, the resulting
A-derivative of3 equals the expression that we would obtain by interchanging the order
of differentiating and the order of taking traces or integrals in the definitic. of

In Sect. 10 we consider a different but related case with two independent differentials
Q1 andQ». While we assume tha®; is invariant under the symmetry grodp we do
not assume the invariance gf. We replace this assumption by the two assumptions,
namely both thaQ3 is invariant, and thaD? — 03 commutes with all observables. We
show in this case that an expectation (10.4) has a representation similar to (1.1) and also
is an invariant with respect to.

2. The Supercharge

Our basic framework involves an odd, self adjoint opergoon aZ,-graded Hilbert
spacel. This means that we have a self-adjoint operatan A for which y2 = I.
Thus?H splits into the direct surit = H4 & H_ of eigenspaces of. The statement
that Q is odd meang)y + y Q = 0. In terms of the direct sum decomposition,

(0 03 (I 0
0= (Q+ O+> andy = (0 —I) ) (2.1)
The operatoi is the superchardeand its square
_2_(ei0+ O
H=0= ( 0 0,0% (2.2)

1 We are not concerned with the basic structuretbbr Q, aside from the possibility to perform the
construction in 8V.
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will be referred to as the Hamiltonian. We let = yxy denote the action of on
operators. We say that the operatds even (bosonic) it = x¥ and odd (fermionic) if
x¥ = —x. We define the graded differential

dx = Qx —x7 Q. (2.3)

We suppose that there is a compact Lie gréuyith a continuous unitary represen-
tationU (g) onH such that

U@y =yU(g), and U(g)Q = QU(g). (2.4)

Denote the action af/ (g) on the operatox by

x— x8=U(g)xU(g) ™ (2.5)

3. The Observables

Consider an algebra of bounded operaftrsn # such that each € 21 is even ang-
invariant. In other words, eache 2 commutes withy and withU (g) forall g € G.Also
consider Mat (1), the set o x n matrices with matrix elements . If a € Mat, (0),
thena = {a;;}, whereg;; € . Use the shorthandb € Mat, (0) to denote the matrix
with entries(ab);j = Y ;_1 aixbrj € 2. Define the differential of a elemeate 2 by

da=Qa—aQ =1[0,al. (3.1

This is always densely defined as a quadratic formosr H. We make precise the
boundedness properties of this quadratic form in Sect. 11. Wetosdenote an element
of the algebr&l andx to denote a linear operator or a bilinear form acting-arin the
latter case, we assume that the domain ofcludesC>®(Q(1)) x C®(Q(L)).

4. The Invariant 32®(a, g)

In[QHA] we gave a simple formula for an invariant. L@{1) depend on areal parameter
M. We denote the graded commutator (2.3ah.) with x by

dx = Q(M)x —x” Q(A), 4.1)

that reduces taya = [Q()1), a] for a € 2A. Fora € 2, the invariant is (1.1). More
generally, we let: € Mat,, (2(). In this case

3% g = — [T (rU(gaem 0@ i) =g, (4.2)
1g - \/E o H@an y g ’ .
wherey, U(g), Q0?2 act in Mat, () as diagonah x n matrices of the formy ® I,

U(g) ® 1, etc.

Theorem 1.For a € Mat, (2(), assume?2 = I. Furthermore assume th@ = Q(})
andd;a = [Q()), a] satisfy the regularity hypotheses givenin Sect. 11. B#® (a, g)
is independent of.

The main point of this paper is to present an elementary proof of Theorem 1.
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5. The Extended Superchargey

In order to exhibit our proof, we introduce a new Hilbert spﬁen which the operators
0,v,2, andU(g) also act. In addition, ori there are two additional self adjoint
operators; andJ, both of which have square one,

n?=J=1 (5.1)

Furthermore, we assume thatommutes withy, with all elements of(, and with the
representatiod/ (g). In other words,

[n,x]=[J,x]=0forx =y,a €A, orU(g). (5.2)
Also we assume that commutes withQ, but thaty anticommutes witly and withQ,
nJ+Jn=n0+0n=1[J,0]=0. (5.3)

LetI’ = yJ denote &,-grading orf{. We now letx denote a linear operator or bilinear
form acting o/ (in the latter case, with domain includi@f® (Q (1)) x C*°(Q (1))

xU =Tl (5.4)
The operator is our auxiliary fermionic coordinate, and= (—7)"» is the correspond-

ing Z grading?
Givena € 2, define the extended superchatgge: ¢ (1, a) by

qg=q,a)=Q00) +na, (5.5)
and also let
h=h, a) =qk, a)?=Q00?+a°—nda. (5.6)
Note that
q" =—gq, andh" = h. (5.7)

We use the notatiod, to denote thé'-graded commutator oH,
dgx =gx — x'g. (5.8)

If we need to emphasize the dependencg o A or a, then we writed, ;. .)x. We
continue to reservé or d, to denote the/-graded commutator (4.1).

2 suppose that{ = Hp ® H s is atensor product of bosonic and fermionic Fock spaces@hstinear in

fermionic creation or annihilation operators, and that (—I)N/'. This would be standard in the physics of
supersymmetry. Suppose in addition that b + b* denotes one fermionic degree of freedom independent of
those irH ¢ and acting on the two-dimensional spa¢g. Then takel{ = Hp®(H f AHy) andJ = (fl)b*b,

with Q. y. a, andU (g) acting on? in the natural way. This gives a realization of (V.1-3)&n
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6. Heat Kernel Regularization on#
Let us introduce the heat kernel regularizatimsx)f X, on A. LetX, = {x0,...,xa)}
denote an ordered set 6f + 1) linear operators; acting or?{. We call thex; vertices

andX, aset of vertices. Choogec 21 and Ietg(}, a) = Q(A)+na,andh = h(A,a) =
g (%, a)2. Define the heat kernel regularizatidi (x, a) = {xo, . .. , x,}"(*, a) by

X,(h, a) = / xoe M xpe M xS (1 — 59— - — sp)dso - - - dsy. (6.1)
5;>0

Note that ifT is any operator ofi{ that commutes with = g2, then
{xo, ..., x;T,xj41,... L xn )N, a) = {xo, ... X, Txjya, ... X} (A, a). (6.2)
Furthermorel’ = Jn anti-commutes witly (A, a) and commutes with (A, «) for all a.

Proposition 2 (Vertex Insertioh LetX,, = {xo, ... , x,} denote aset of vertices possibly
depending or.. Then with the notatio®® = 9 Q(A)/dX, we have

9 é :
a_)\{x()s'-' 7-xn}/\()"va):_z{-x0a'~- »-xjvdqu-xj-‘rlv"' 1xn}/\()\va)
j=0

+Z{xo,... % L xn )N (L a). (6.3)
j=0
Here
dyQ = dy.0)0 = d,.0 + 1la, Q1. (6.4)

Proof. By differentiating X, defined in (6.1), we obtain two types of terms. Differ-
entiating thex;’s gives the second sum in (6.3). (This sum is absent ifafie are
Ar-independent.) The other terms arise from differentiating the heat kernels. We use the
identity

ie—sh - _ /s e—uh %e—(s—u)hdu7 (65)
N 0 A
that holds under suitable regularity hypotheses, see for example Proposition VII1.10 of
[QHA]. Here
oh 0 5 dq dq dq .
o ) =g Ty q(ax ¢Q
Explicitly

dysQ = (Q+na)Q + 0(Q + na) = d, Q0 + nla, Q1.

Inserted back into the definition d?fn, we observe that the differentiation of the heat
kernel between vertex and vertex;j + 1 produces one newd, O vertex at position
J + 1. This completes the proof of (6.3)a
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Define the action of the gradingon sets of verticeX,, by
Xn—>X,l;={xg,x{,...,xF}. (6.6)

n

Sinceg? = (¢")?, the regularizatioX,, — X,, commutes with the action df, namely
(%, a))r = (xD)" (. a). 6.7)
It is also convenient to write explicitly the expression for the differerai,;é{n,
dgXn(h, a) = X, (1, a) — X, (0, a)'q

= {gx0, x1, ..., X} (X, a) — {x(];, ... ,x,];q}/\()», a). (6.8)

In particular, we infer that
n
dgXn(h,a) = Z{x(l;, Xl ... ,xjr_l, dgxj, ..., x) (X, a). (6.9)
j=0

One other identity we mention is

Proposition 3 (Combination Identity The heat kernel regularizations satisfy

n

{x0, X1, ..., %) (X, a) = Z{xo, RTINS R b I T L xn )N a). (6.10)
j=0

Proof. The j1 term on the right side of (6.9) is

{xo, o xj, Lxj1, o, X0} (X, a)
— / xoe—soh . 'Xje_(sj+sj+l)h
5;>0
coxpe S (L— 59— o — Spn+1)dso - - dsp41. (6.11)
Change the-integration variables te) = so,s] = s1,... ,s} =5; +5j41, s}H =
Sj+2s--- 5, = Su+1, @nds, , = s;. This change has Jacobian 1, and the resulting
integrand has the form of the integrand faw, ... , x,}" with variabless, ... ,s;,
namely
/ ’
// / dsy---ds, (/ ds) 1x0e "M - xS (L — sy — - — sé)) ,
so,sl,...,s,’l>0

(6.12)

with the integrand depending on the variable, only through the restriction of the
range of the, 41 integral. The original domain of integration restric;§1 to the range

0 < 5,41 < s, so the dependence of the integrand/on, is the characteristic function

of the interval[O, s}]. Thus performing the;,_ , integration produces a facto§ in

the s, ... , s,-integrand. Add the similar results for & ; < n to give the factor
so+ 81+ - - s,,. Butthe delta function in (6.12) restricts this sum to be 1, so the integral
of the sum is exactlyxp, ... , x,}* (A, a). O
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7. Expectations on#{

Leta e A satisfya2 =1, and letX, = X, (1, @) denote the heat kernel regularization
of X,,. We define the expectation

((f{n»mg - \/% /Z Tr (FU(g)f(n(A, ta)) dr. (7.1)

Here we choose? = [ to ensure that the? term in/ provides a gaussian convergence
factor to thet-integral. This integral represents averaging averwhose squares are
multiples of the identity.

These expectations can be consideregias 1)-multilinear expectations on sexs,
of vertices. We sometimes suppressiher a- or g-dependence of the expectations, or
then-dependence of sets of vertices. Furthermore, where confusion does not occur we
omitthe” that we use to distinguish a set of verticéfrom the heat kernel regularization

of the set. Thus at various times we der<(<)1%n>) by ((X)), orwhen we wish to clarify
a,g

the dependence on a, or g with some subset of these indices, or even as one of the
following:

(%)), .., = (@0 = (X = (XDa = (KD (7.2)

etc.

Proposition 4. With the above notation, we have the identities

(I-invariance) (X0, =((x")), . (7.3)

(HETn@D g, x), = S ({58 a gy o). 7.4)
j=0

(eyelie Symmet(f()&o’ X1y .en, Xp})) = <<ix§711“, X1, X2, ... ,xn_l}», (7.5)

and

(combination identity)

n

(({x0, X1, -« , X)) = Z(({xo,xl,... Jxj L xjq, .. ’x"})>n+1' (7.6)
j=0

Also, in casep = Q% anda = a¥, theng = ¢% and we have

(infinitesimal invariance)
({dgr.a) X)) = 0. (7.7)
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Proof. The symmetry (7.3) is a consequence of the factEfat= 7, andI" commutes
with U (g) and withg?. The expectation of (6.9) completes the proof of (7.4). The proof
of (7.5) involves cyclicity of the trace. The identity (7.6) is the expectation of (6.10).
To establish (7.7), note that eveky, can be decomposed uniquely®is = X + X,

A \T N
where (X,f) = +X;f. The symmetry (7.3) ensures tHat, ;. ) X;)) = 0. On the
other handg" = —g, together with cyclicity of the trace ang = ¢ ensures that

((dgo.100 X)) = (@ O 1) X, ) + (X, g O, 1))
= {lg@ tX; ) + (a6 10* Tx, ) =0 o
Exceptin (7.7), we have implicitly assumed that the verticeis X, aret-independent.

In case thak,, has one factor linear in the heat kernel regularizations of the following
agree:

{txo, X1, ..., X} (A, ta) = {xo,xl, ce s EXG ,xn}/\ (A, ta) , (7.8)

foranyj =0, 1,...,n. We then obtain an interesting relation for expectations,

Proposition 5 (Integration by parts Leta? = I. Then

21
(({tx0, X1, .-« X0 }1))y = Z > <<{xo, e X, ndya, Xjga, - ’x”}>>n+l' (7.9)
=0

Proof. In order to establish (7.9), we collect together the termgexpz) that occur
in {xo,...,x,}" (ta). Since the integrand for the heat kernel regularization hés a
function restricting the variables to satisfysg + - - - 4+ s, = 1, we obtain the factor
exp(—12). Write

e = —%% (eilz)

and integrate by parts im The resulting derivative involves thederivative of each heat
kernel exp—(s;q(x, ta)?) with the quadratic term inremoved fromy2. Note that

s
e—slzie—s(qz—tz) — _/ e—uqz (i(qZ o t2)) e—(s—u)qzdu
dt 0 dt

:/ e " ndyae” STV dy.
0

Here we use (5.6) withu replacing: and witha? = I in order to evaluate thederivative
of g% — 2. Thus each derivative introduces a new vertex equéhma, and the proof
of (7.9) is complete. O
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8. The Functional J(, a, g)

Let us consider a single vertex al@ = xo = Ja, wherea € 2(, and its expectation

I, a,8) = ({Ja)). (8.1)
Explicitly
J(r,a,8) = \/%_n/ Try (yU(g)aefq()‘"“F) dt. (8.2)

This functional allows us to recover the functioral
Theorem 6. Letq satisfya? = I. Then
I a, g) =32W(a, ). (8.3)

Proof. Let h = hg — tnda, wherehg = Q(1)? + 2. The Hille—Phillips perturbation
theory for semi-groups, see Theorem 13.4.1 of [HP], can be written

_ 2 _
e q(A,ta) =e ho+tnda

o0
— ¢ ho + Z M / e_sohondxae_slhondka
=1 5;>0
e nd)\ae_s”hoﬁ(l — 50— 81— ---— Sp)dsodsy---dsy. (8.4)

In then™ term we collect all factors of on the left. Note thay commutes with: and
ho, and it anti-commutes with, a. Therefore the result of collecting the factorsyafn
the left isy" (—1)""~1/2.If n is odd, them" = 5 and Try, () = 0. Thus only even

n terms contribute to (8.2). For eveny" (—1)"~Y/2 = (=1)"/2J and Try, (I) = 2.
Thus (8.2) becomes

1 [ &
I, a, g = ﬁ/ dt Z(_ZZ)n {a,dya, ..., dra})y, ot 7 (8.5)
- n=0

where we use expectations, onH similarto(( )), on# (butwithout the-integration)
and defined by

({x0, + -+ Xn ) =/ Try ()/U(g)xoe_‘“’Q(”2 - -xne_‘Y"Q(”z)
5;>0
-8(l—s9—s851—---—sp)dsodsy---dsy. (8.6)

But using the Hille—Phillips formula once again, (8.6) is just

1 o 2444 2
T/ diTry (VU(g)ae_Q(” i ”) e =3%MW, . (8.7)
T Joo

(Here we use the symmetry of (8.7) undgeto justify vanishing of terms involving odd
powers ofd; a.) Thus we can prove th&<2® (a, g) is independent of by showing that
J(,a, g)isconstantirh. O
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9. (J(1, a, g) Does Not Depend ork.

We now prove Theorem 1. Calculatg/ax using (6.3), in the simple case of one vertex
independent of. Thus

d . d .
530ua.8) = ——((Ja) = —({{Ja. dgo.10) O})) - 9.1)
Using the identity (7.7) in the form
0= ({dgr.1a) { /. O})) = ({dgor.10 V). Q) + (({Va. dgoiy O})) . (9.2)
we have
a .
a_x‘?(k’ a, 8) = (({dgo.a)(Ja), O})). (9.3)

Itis at this point that we have used = ¢, namely the invariance of botd anda under
U (g). To evaluate (9.3), note that

dgoriay(Ja) =q(A, ta), Jal = Jdya — 2tJ . (9.4)

Here we use the assumptief = /. From Proposition V we therefore infer

2 30,9 = ({7, O}~ 2({{rn. 0}
= (({7dra. O})) = (({In. ndra. Q})) — (({Jn. Q. ndra})). (9.5)
SinceJn commutes withh = ¢2, and since/nQ = —QJn, use (6.2) to establish
({70 ndsa, OY)) +({{/n. Q. ndral)) = ({1. Jdra. OY)) = ({{1. Q. Jdra}))
= ({sdra, 0, 1))+ (({Jdsa, I, O})). (9.6)

In the last step we also ys@r = —Q and the cyclic symmetry (7.5). Hence we can
simplify (9.6) to(({ Jd,a, Q})), by applying the combination identity (7.6). Substituting
this back into (9.5), we end up with

%m, a.9) = ([[Jdra. O)) - ({{Jdsa. O})) =O. 9.7)

ThusJ (A, a, g) is invariant under change af and the demonstration is completel

10. Independent Supercharge®) ; (1)

Let us generalize our consideration to the case that there are two self-adjoint operators
Q1 = Q1(1) and Q2 = Q2(») onH such that

01y +y01=0Q2v +v Q2= 0102+ 0201 =0. (10.1)

Thus we have two derivative5a = [Q, a]. We assume that the energy operatofbn
is defined by

NI =

1
H=HG) =301+ 022 =3 (03 +0)) (10.2)
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and that the operator

P =

NI =

(0%-03) (103)
has the properties:

i) P does not depend on

i) P commutes withQ1, Q> and with eaclr € .

iii) U(g) commutes withQ, and withH ().

Assumption (i) corresponds to a common situation whrean be interpreted as a
“momentum” operator. Then the energy, but not the momentum, is assumed to depend
on A. Assumption (ii) says thaP1, Q> are translation invariant, and thitis a “zero-
momentum” or translation-invariant subalgebra. According to assumption(iiig,)
commutes withQ%, but U(g) may not commute withQ,. Under these hypotheses,

agd with appropriate regularity assumptions, we proved in [QHA] that fera$ and

at =1,

30V a0 = - f T (yU@ae e (10.)
—0o0

is independent af. In this section we give an alternate proof that (10.4) is constant.

Introduce or#{ two extended supercharges= g1(%, a) = Q1+ na andgs = Q>.
With n as beforep Q1+ Q1n = nQ2 + Qon = 0. Define

h = h(\, ta) = HQ) + t2a? — tydaa. (10.5)
Note that
h=qi(r ta)> — P = Q1()% + 1%a® — tnd1a — P, (10.6)
so we can eliminat@®2(A) from A by introducing the operataP, that commutes with
a,y,J,U(g),n,andQ;(1). .

Thus P commutes with all operators that we considerfénso we repeat the con-
structions of Sects. 5-9. However, we replace, ta)? in the previous construction
with h(%, ta) defined by (10.5). Also we replaegx with d,x = q;x — quj'. We
use the heat kernel eipsh) to define the heat kernel regularization. Then define the

expectation(-)) by the formula (7.1) with this new(x, ta). Asq1 = qf, therefore we
have

((dgs 00 X)) = O. (10.7)

However it may not be true thag = ¢5, so it may not be true th#{i,, ..14) X)) vanishes.
As before, witha? = I, define

I, a,8) =((Ja)). (10.8)
In this case, we establish as in the proof of Theorem 6 that
I, a,g) =3%P(a,yg). (10.9)

Thus the proof of Theorem 1 shows:

Theorem 7.Leta € A, assume? = I, and also assume the regularity hypotheses on
Q;(») anddia = [Q1()), al, stated in Sect. 11. Then the expecta* (a, g) is
independent of.
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11. Regularity Hypotheses

As explained in the introduction, our results depend crucially on some regularity hy-
potheses. In order f@ to exist, we assume 7 = ¢~2®? exists and is trace class

on?H. We give sufficient conditions to ensure this, as well as to ensure the validity of the
results claimed in Sects. 1-9. The content of Sect. 10 requires only minor modification
of these hypotheses. We have explored the consequences of these hypotheses in [QHA].

1. The operato is self-adjoint ori, odd with respect tg, ande—#2” is trace class
forall 8 > 0.

2. Fori € A, whereA is an open interval on the real line, the operafip.) can be
expressed as a perturbation@fin the form

00 =0+ WQ). (11.1)

EachW (1) is a symmetric operator on the domdn= C*°(Q).
3. Leta lie in any compact subinterval’ C A. The inequality

W2 <aQ?+bl, (11.2)

holds as an inequality for forms di x D. The constanta < 1 andb < oo are
independent of in the compact sex’ C A.

4. LetR = (Q?+ I)~1Y2. The operatoZ(1) = RW(L)R is bounded uniformly for
A € A’, and the difference quotient

Z\) —Z
Z@) -z (11.3)
A=
converges in normto alimitas — A € A’ C A.
5. The bilinear formd, a satisfies the bound
IR*draRP| < M, (11.4)

with a constand/ independent of for A € A’. Herew, 8 are non-negative constants
ando + 8 < 1.

In certain examples we are interested in the behavigr(@f a, g) asa tends to the
boundary ofA. In this case, we may establish the constancy with estimates that are
weaker than (1-5) at the endpoint®f by directly proving the existence and continuity
of J at the endpoint. We study one such example in [HE], though other types of endpoint
singularities are also of interest (often involving a> oo limit).
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