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Abstract

We give an intuitive method—using local, cyclic replica
symmetry—to isolate exponential tree decay in truncated (connected)
correlations. We give an expansion and use the symmetry to show
that all terms vanish, except those displaying replica condensation.
The condensation property ensures exponential tree decay.

We illustrate our method in a low-temperature Ising system, but
expect that one can use a similar method in other random field and
quantum field problems. While considering the illustration, we prove
an elementary upper bound on the entropy of random lattice surfaces.
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I Introduction

Symmetry is used widely in physics to unify laws or simplify results. Global
symmetries often arise and are characterized by Lie groups or their repre-
sentation acting on a manifold. Some symmetries, such as gauge symmetry,
are local; they are characterized by the action of a group on a bundle over
a manifold. Global replica symmetry has been introduced as a symmetry of
the Hamiltonian of certain interacting systems such as Ising models, random
fields, and quantum fields, leading to valuable insights.

In §III we study local replica symmetry. This is not a symmetry of the
Hamiltonian in general, but it is a symmetry within certain spin configu-
rations. This enables us to simplify our expansion of certain expectations
in the low-temperature Ising system in order to exhibit a desired property:
exponential tree decay of truncated correlations. This low-temperature ex-
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pansion only serves to illustrate our method. We plan to investigate the use
of our method in other high-temperature and low-temperature situations for
random and quantum fields.

Consider the truncated expectations 〈σi1σi2 · · ·σin〉
T, defined in §IV.1.

The Ising spins σi are maps from the unit lattice Zd in d ≥ 2 dimensions to
±1. The Hamiltonian is H = 1

2
‖∇σ‖2, and the Gibbs factor is e−βH , where β

denotes the inverse temperature. We show in §VIII that there are constants
a, b such that for δn = β − b ln n ≥ 1,

∣

∣

∣
〈σi1σi2 · · ·σin〉

T
∣

∣

∣
≤ a nn e−δnτ(i1,...,in) , (I.1)

where τ(i1, . . . , in) is the length of the minimal tree connecting the n points
i1, . . . , in. Note the condition δn ≥ 1 requires that β ≥ βn, where βn grows at
least as fast as O(lnn). It would be of interest to eliminate the n-dependence
from the minimum value of β.

Our method uses replica variables, comprising n identical, independent
copies of the original system; one considers expectations in the replicated
system that are product expectations for the individual systems. Replica
symmetry is the symmetry of these expectations under a permutation of
the copies. For a system in a finite volume Λ, with i1, . . . , in ∈ Λ, the
same estimate holds uniformly in Λ. Our method requires unbroken replica
symmetry, so one must impose the same boundary conditions in each replica
copy.

We develop a low-temperature expansion, based on the intuitive idea
that individual terms with less than the desired exponential tree-graph decay
sum to zero (vanish) due to symmetry under the local cyclic replica group. In
§VIII we define and establish convergence of this expansion. The terms in the
expansion are parameterized by replica continents. These replica continents
are bounded by random surfaces. The convergence of our expansion relies
on an interplay between energy and entropy estimates; in particular we give
entropy estimates bounding the number of random surfaces that occur in
our expansion, as well as energy estimates showing that large islands are
suppressed at a desired rate.

Key to our method is the use of local cyclic replica symmetry, to show
that all non-zero terms in our expansion display replica condensation, defined
in §V. By this we mean that all the lattice sites i1, . . . , in must live on a single
continent. The size of the boundary of the continent must therefore be larger
than τ(i1, . . . , in); this is the source of the exponential tree decay.



4 Arthur Jaffe and David Moser

I.1 The Ising Model as Illustration

The Ising system is the simplest example of a statistical mechanics interac-
tion. We present our method for such a model on a unit cubic lattice Zd,
with d ≥ 2, although our methods clearly apply in more generality. The Ising
Hamiltonian in volume Λ ⊂ Z

d is

HΛ = HΛ(σ) =
1

2
‖∇σ‖2ℓ2(Λ) =

∑

nn∈Λ

(1− σiσj) , (I.2)

where nn denotes the sum over nearest-neighbor pairs of sites in the lattice,
namely sites with |i− j| = 1. The partition function

ZΛ,β =
∑

σi
i∈Λ

e−βHΛ(σ) (I.3)

normalizes statistical averages 〈f〉Λ,β of a function f , namely

〈f〉Λ,β =
1

ZΛ,β

∑

σi
i∈Λ

f(σ) e−βHΛ(σ) . (I.4)

Often f is a monomial in spins, f = σi1σi2 · · ·σin . The expectation 〈 · 〉Λ,β is
linear, so one can express the expectation of a general f as a limit of finite
linear combinations of expectations of the form 〈σi1σi2 · · ·σin〉Λ,β.

II The Correspondence Z
d ↔ R

d

Each subset X ⊂ Zd of sites in the lattice Zd can be identified with a subset
X ⊂ Rd. Define the latter as the union of closed, unit d-cubes �i centered
at the lattice sites i ∈ X, as we illustrate in the upper part of Figure 1.

Connectedness: We say that X ⊂ Zd is connected if any two sites in X
can be connected by a continuous path through nearest-neighbor lattice sites
in the set X. This agrees with the notion that the interior of the set X ⊂ Rd

is connected in the ordinary sense. Two cubes are connected if they share a
(d − 1)-dimensional face, but they are disconnected if they only touch on a
corner of dimension ≤ (d− 2).
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Figure 1: An example for the correspondence between subsets of Zd and Rd,
and their boundaries.

Boundary: The boundary ∂X ⊂ Rd allows us to define the set ∂X ⊂ Zd of
boundary lattice sites. These boundary sites ∂X ∈ Zd are those lattice sites
in X lying in cubes that share a (d− 1)-dimensional face with the boundary
∂X ⊂ Rd.

By |∂X| we always refer to the area of the (d − 1)-dimensional surface
in Rd and not the number of points in Zd. (A single cube �i, for example,
contains exactly 1 boundary lattice site, while |�i| = 2d.) In most instances
we will call this area the “length” of the boundary, but in some cases we
will also call it the number of faces of the boundary surface. We illustrate
the correspondence between the boundary lattice sites and the boundary of
regions in Rd in the lower part of Figure 1.

Surface: More generally let a face in Rd denote a (d − 1)-cube; such a
cube lies in the boundary of two d-cubes in Rd. A surface Y is a union of
(d − 1)-faces, and its area | Y | is the number of (d − 1)-faces in Y . Lattice
sites in Y may lie on either side of the surface Y , but could be limited by
selecting an orientation to appropriate sets of faces in Y .
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Connected Surface: Define two faces to be adjacent, if they share a (d−
2)-cube. Likewise, define Y to be connected if any two faces in Y can be
reached by a continuous path through a sequence of adjacent faces in Y .

III Replica Variables and Symmetry

Choose n ∈ Z+ and consider n independent copies of a statistical-mechanical
or quantum-field system; these are called n replicas. One can study the prop-
erties of expectations under the group of permutations of the replica variables
(the replica group). The n-element subgroup of cyclic permutation of all the
copies is abelian, and it provides useful one-dimensional representations of
replica symmetry.

III.1 Replica Variables

We assume that the different replicas are identical and independent. They
are defined on the same lattice, they have the same form of interaction, they
are given identical boundary conditions, etc. We label the spin variable at
the lattice site i by σ

(α)
i , where α = 1, 2, . . . , n denotes the index of the copy.

We also consider the replica spins at site i as a vector ~σi with the vector
components σ

(α)
i .

III.2 The Global Replica Group

The global replica group is the symmetric group Sn comprising elements π ∈
Sn with action,

π : (1, . . . , n) 7→ (π1, . . . , πn) . (III.1)

The element π ∈ Sn acts on the spins, giving a unitary representation,

σ
(α)
i 7→ (πσi)

(α) = σ
(π−1

α)
i , for α = 1, . . . , n , and for all i . (III.2)

The global cyclic replica group Sc
n is the subgroup of cyclic permutations of

n objects, and is generated by the permutation π0,

π0 : (1, . . . , n) 7→ (2, . . . , n, 1) . (III.3)

Treating the indices α modulo n, substitute α = n for α = 0 and write

σ
(α)
i 7→

(

π0σi

)(α)
= σ

(α−1)
i , for α = 1, . . . , n , and for all i . (III.4)
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The matrix representation of (III.4) is ~σi 7→ π0~σi, where

(

π0~σi

)(α)
=

n
∑

α′=1

(

π0
)

α α′
σ

(α′)
i , and

(

π0
)

αα′
= δα−1 α′ . (III.5)

III.3 The Local Cyclic Replica Group

Let K denote a subset of the lattice Zd. The local cyclic replica group Sc
n(K)

is a bundle over Sc
n defined as the action of Sc

n on the spins in K and the
identity on the complement. This group is generated by π0

K which has the
representation on spins,

π0
K~σi =

{

π0~σi , when i ∈ K
~σi , when i 6∈ K

. (III.6)

III.4 Irreducible Representations

The cyclic replica group is abelian, so its irreducible representations are one
dimensional. We transform from ~σi to a set of coordinates ~si = U~σi to reduce
the representation of Sc

n. In particular, let ω = e2πi/n denote the primitive
nth root of unity. Define

s
(α)
i =

1

n1/2

n
∑

α′=1

ωα(α′−1)σ
(α′)
i , for α = 1, . . . , n . (III.7)

Note that for n > 2 the s-variables may be complex, even though the original
σ-spins are real. The choice (III.7) defines the entries of the matrix U as
Uαα′ = n−1/2ωα(α′−1). This is Fourier transform in the replica space.

Proposition III.1. The matrix U is unitary with eigenvalues ωα, for α =
1, . . . , n. Let D be the diagonal matrix with Dαα′ = ωαδαα′. Then

π0~si = D~si . (III.8)

Proof. For ν an integer (modulo n),

n
∑

α=1

ω−να = n δν0 . (III.9)
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Thus

(UU∗)αα′ =
n

∑

β=1

UαβUα′β =
1

n

n
∑

β=1

ω(α−α′)(β−1) = δαα′ . (III.10)

Since π0 acts on the ~σi components according to (III.4), this means that

(

π0~si

)(α)
= ωα (~si)

(α) =

n
∑

α′=1

Dαα′ (~si)
(α) , (III.11)

which is (III.8).

The inverse change of coordinates is

σ
(γ)
i =

1

n1/2

n
∑

α=1

ω−(γ−1)αs
(α)
i , for γ = 1, . . . , n . (III.12)

A further corollary of the unitarity of U is the fact that for any i, j

n
∑

α=1

σ
(α)
i σ

(α)
j = 〈~σi, ~σj〉ℓ2 = 〈U~σi, U~σj〉ℓ2 = 〈~si, ~sj〉ℓ2 =

n
∑

α=1

s
(α)
i s

(α)
j . (III.13)

In particular, the expression on the right side of this identity is always real.
Furthermore, each individual term on the right is invariant under the ele-
ments of the local, cyclic replica group Sc

n(K) as long as both i, j ∈ K or
both i, j 6∈ K.

III.5 Replica Boundary Conditions

We consider finite volume Hamiltonians that, along with their boundary
conditions, have the global replica group as a symmetry. If one wished to
investigate the breaking of the replica group in the infinite volume limit, then
one might explicitly break replica symmetry in a finite volume by imposing
different boundary conditions for different replica copies of the system.

Since our system is originally given in terms of the variables σi, one
describes the boundary conditions in the volume Λ in terms of the variables
σi for i ∈ ∂Λ, with ∂Λ defined in §II.
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It is natural to ensure symmetry under the replica group by specifying
the same boundary condition on each component of the vector spin

σ
(α)
i = σi , for all i ∈ ∂Λ , and all α = 1, . . . , n . (III.14)

In order to simplify the discussion, we impose +1 boundary conditions in
each replica copy: set

~σi = (+1, . . . , +1) , when i ∈ ∂Λ . (III.15)

The resulting boundary conditons for ~s are

~si =
(

0, 0, . . . , 0, n1/2
)

, when i ∈ ∂Λ . (III.16)

III.6 Replica Symmetry is Global, not Local

Define the total replica Hamiltonian Hreplica as the sum of the Hamiltonians
for the replica copies of the Hamiltonian in volume Λ,

Hreplica = Hreplica(~σ) =
1

2
‖∇~σ‖ℓ2(Λ) =

1

2

n
∑

α=1

∑

nn∈Λ

(

σ
(α)
i − σ

(α)
j

)2

. (III.17)

Proposition III.2. Consider the replica Hamiltonian (III.17).

i. As a function of the variables ~s, one has

Hreplica =
1

2
‖∇~σ‖ℓ2(Λ) =

1

2
‖∇~s‖ℓ2(Λ) =

1

2

n
∑

α=1

∑

nn∈Λ

∣

∣

∣
s
(α)
i − s

(α)
j

∣

∣

∣

2

.

(III.18)

ii. The replica Hamiltonian (III.18) is invariant under a global replica
permutation π ∈ Sn defined in (III.2), namely

Hreplica(π~s) = Hreplica(~s) . (III.19)

iii. In general, the replica Hamiltonian is not invariant under the local
cyclic replica group Sc

n(K) defined in (III.6).
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Proof. The relation (III.13) shows that Hreplica has the form (III.18). The
invariance under the global replica group follows by considering the effect on
Hreplica expressed in the ~σ variables, where the transformation permutes the
various terms HΛ(σ(α)) in the first expression for Hreplica in (III.17).

In order to see that Hreplica(~σ) is not invariant under the local cyclic replica
group, we give a configuration ~σ and set K that provides a counterexample
in the case n = 2. It is easiest to visualize this configuration by illustrating
it; see the left side of Figure 2. We choose K to be the centermost square in
the configuration (with σ(1) = +1 and σ(2) = −1), and choose πK ∈ Sc

n(K)
to flip the spins in K. The action of πK produces the configuration on the
right side of the figure, and it lowers the energy by 4|∂K|. In other words,
Hreplica(~σ)−Hreplica(πK~σ) = 4|∂K|, showing that Hreplica is not invariant under
the action of Sc

n(K).

σ(1) : ++− −→ +−

σ(2) : +− −→ +

Figure 2: A counter-example to local cyclic replica symmetry.

IV Expectations

Define the expectation ≪ · ≫Λ,β for the replicated system as follows: for a
function F (~σ), let

≪F≫Λ,β =
1

Z

∑

~σi
i∈Λ

F (~σ)e−βHreplica(~σ) , (IV.1)

where Z = Zn, with Z is given in (I.3). In case that F (~σ) = f(σ(α)) only
depends on one component σ(α), the expectation ≪ · ≫Λ,β reduces to the
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expectation 〈 · 〉Λ,β. In this case

≪f(σ(α))≫Λ,β = 〈f(σ)〉Λ,β , for α = 1, . . . , n . (IV.2)

We now introduce the generating function S(µ) for expectations of prod-
ucts of spins. Let µ be a function from Λ to C and let

σ(µ) =
∑

i∈Λ

µi σi , and correspondingly σ(α)(µ) =
∑

i∈Λ

µi σ
(α)
i . (IV.3)

Then define
S(µ) =

〈

eσ(µ)
〉

Λ,β
=≪eσ(α)(µ)≫Λ,β . (IV.4)

The expectations of n spins are derivatives of the generating function,

〈σi1 σi2 · · ·σin〉Λ,β =
∂n

∂µi1∂µi2 · · ·∂µin

S(µ)

∣

∣

∣

∣

µi=0

=≪σ
(1)
i1

σ
(1)
i2
· · ·σ(1)

in
≫Λ,β .

(IV.5)
The expectations (IV.5) are n-multi-linear, symmetric, functions of the spins,

〈σ(µ)n)〉Λ,β =

n
∑

i1,...,in=1

µi1 · · ·µin 〈σi1 σi2 · · ·σin〉Λ,β . (IV.6)

One can recover the expectation 〈σi1 σi2 · · ·σin〉Λ,β from the expectations of
powers of σ(µ) by polarization,

〈σi1 σi2 · · ·σin〉Λ,β =
1

2nn!

∑

ǫ1,...,ǫn=±1

ǫ1 · · · ǫn 〈(ǫ1σi1 + · · ·+ ǫnσin)n〉Λ,β .

(IV.7)

IV.1 Truncated Expectations

The truncated expectation of a product of n spins is a generalization of the
correlation of two spins. The truncated expectation vanishes asymptotically
as one translates any subset of the spin locations a large distance away from
the others.

The generating function of the connected expectations is

G(µ) = ln S(µ) = ln
〈

eσ(µ)
〉

Λ,β
. (IV.8)
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One defines the truncated (connected) expectations as

〈σi1 σi2 σi3 · · ·σin〉
T
Λ,β =

∂n

∂µi1∂µi2 · · ·∂µin

G(µ)

∣

∣

∣

∣

µi=0

. (IV.9)

A standard representation of 〈σi1 σi2 σi3 · · ·σin〉
T
Λ,β in terms of sums of prod-

ucts of expectations can be formulated in terms of the set P of partitions of
{i1, i2, . . . , in}. Suppose that a set P ∈ P has cardinality |P |. Then

〈σi1 σi2 σi3 · · ·σin〉Λ,β =
∑

P

∏

P∈P

〈

σP
〉T

Λ,β
. (IV.10)

Like the expectations (IV.5), the n-truncated expectations satisfy the n-
multi-linear relation (IV.6)–(IV.7). Thus

〈σ(µ)n〉TΛ,β =

n
∑

i1,...,in=1

µi1 · · ·µin 〈σi1 σi2 σi3 · · ·σin〉
T
Λ,β , (IV.11)

and

〈σi1 σi2 · · ·σin〉
T
Λ,β =

1

2nn!

∑

ǫ1,...,ǫn=±1

ǫ1 · · · ǫn 〈(ǫ1σi1 + · · ·+ ǫnσin)n〉TΛ,β .

(IV.12)

IV.2 Truncated Functions as Replica Expectations

The form of the replica variables ~s leads to an elementary representation
of the truncated (connected) expectations of products of spins. Ultimately
we show that this yields exponential decay at low temperatures with a rate
governed by the length of the shorted tree-graph connecting all the spins. (A
similar argument presumably works at high temperature.)

Our expansion method uses replica symmetry to arrange that each term
in the expansion either exhibits the desired decay rate, or else it is canceled by
other terms as a consequence of local cyclic replica symmetry. We begin by
establishing a known representation of the connected correlation of n spins as
an expectation of n replica variables introduced above. This representation
was discovered by P. Cartier (unpublished); our presentation is based on
Sylvester’s treatment [2] using s(1). Let g.c.d. denote the greatest common
divisor.
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Proposition IV.1. Let ~s be defined in (III.7) with n replica copies, and let
γ ∈ (1, . . . , n) satisfy g.c.d.(n, γ) = 1. Then

〈σi1 σi2 · · ·σin〉
T
Λ,β = n(n−2)/2≪s

(γ)
i1

s
(γ)
i2
· · · s(γ)

in
≫Λ,β . (IV.13)

Lemma IV.2. For all γ = 1, . . . , n,

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

in
≫T

Λ,β = n−(n−2)/2 〈σi1 σi2 · · ·σin〉
T
Λ,β . (IV.14)

Proof. Using the multi-linearity (IV.11), and its analog for the expectations
〈 · 〉Λ,β and ≪ · ≫Λ,β of the truncated functions, we infer that

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

in ≫
T
Λ,β

= n−n/2≪
n

∑

α1,...,αn=1

ωγα1+···+γαn−γn σ
(α1)
i1

σ
(α2)
i2
· · ·σ(αn)

in
≫T

Λ,β

= n−n/2
n

∑

α1,...,αn=1

ωγα1+···+γαn−γn ≪σ
(α1)
i1

σ
(α2)
i2
· · ·σ(αn)

in
≫T

Λ,β .

(IV.15)

Since the different components of ~σi are independent, the expectations on the
right vanishes unless α1 = · · · = αn. In this case the truncated expectation
of each copy equals the truncated expectation of the original spins, and the
sum yields n such terms. Therefore (IV.14) holds as claimed.

Lemma IV.3. Let kγ 6= 0 (modulo n). Then

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

ik
≫Λ,β = 0 . (IV.16)

Proof. Expand the expectation

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

ik
≫Λ,β

=
1

nn/2

n
∑

α1,...,αn=1

ωγα1+···+γαk−γk≪σ
(α1)
i1

σ
(α2)
i2
· · ·σ(αn)

ik
≫Λ,β

=
1

nn/2

n
∑

α1,...,αn=1

ωγα1+···+γαk−γk≪σ
(α1−1)
i1

σ
(α2−1)
i2

· · ·σ(αn−1)
ik

≫Λ,β .

(IV.17)
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In the second equality, we use the symmetry of the expectation ≪ · ≫Λ,β

under the global cyclic replica group Sc
n ∋ π0. Therefore

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

ik
≫Λ,β = ωγk≪s

(γ)
i1

s
(γ)
i2
· · · s(γ)

ik
≫Λ,β . (IV.18)

As long as γk 6= 0 (modulo n), it is the case that ωγk 6= 1. Therefore the
expectation must vanish.

Proof of the Proposition. The relation (IV.10) also holds for the replica
expectations,

≪s
(γ)
i1

s
(γ)
i2
· · · s(γ)

in
≫Λ,β =

∑

P

∏

P∈P

≪s(γ) P≫T
Λ,β . (IV.19)

Because g.c.d.(n, γ) = 1, it is the case that kγ 6= 0 (modulo n) for all
k = 1, . . . , n − 1. Thus we can apply Lemma IV.3 to each such k, and only
the partition P with all n elements in one set survives in (IV.19). We infer

≪s
(γ)
i1

s
(γ)
i2

s
(γ)
i3
· · · s(γ)

in
≫Λ,β =≪s

(γ)
i1

s
(γ)
i2

s
(γ)
i3
· · · s(γ)

in
≫T

Λ,β . (IV.20)

Using Lemma IV.2 then completes the proof.

V Replica Condensation

In this section we investigate certain classes of configurations ~σ of the replica
spins. We see that for each class of configurations, there is a local cyclic
replica group (see §III.3) under which the Hamiltonian Hreplica of (III.17) is
invariant. This leads to the phenomenon of replica condensation in which
all the spin localizations i1, . . . , in must be localized within a given region
K ⊂ Λ that we call a continent.

V.1 Continents

Each configuration of spins ~σ in the volume Λ defines a sea S(~σ), surrounding
a set of continents K(~σ). The sea starts at the boundary boundary ∂Λ of
the region Λ. The boundary of a continent appears if any one of the compo-
nents of ~σ changes its value. Continents have a substructure arising from the
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different configurations of the individual components σ(α) within the conti-
nent. We say more about this substructure when defining replica continent
contours in §VI.2. In the following we utilize the notion of “connectedness”
introduced in §II.

Definition V.1. Consider a configuration ~σ. The replica sea S(~σ) is the con-
nected component of the set {i | ~σi = (+1, . . . , +1)} that meets the boundary
∂Λ of Λ. The continents Kj are the connected components of the comple-
mentary set, Sc(~σ) = K1 ∪ · · · ∪ Kr . The set of continents K(~σ) is

K(~σ) = {K1, . . . ,Kr} . (V.1)

We illustrate this definition in Figure 3.

K1

K2

K3

K4

K5
S(~σ)

Figure 3: The set of continents K(~σ) = {K1, . . . ,K5} in the sea S(~σ).

V.2 Local Cyclic Replica Symmetry

In §III.6 we saw that a global replica symmetry transformation leaves
Hreplica(~σ) invariant, and that a local replica symmetry transformation does
not necessarily do so. We now recover local cyclic replica symmetry by choos-
ing the localization K in Sc

n(K) to be a continent.

Proposition V.2. Let K ∈ K(~σ). Then the local cyclic replica group Sc
n(K)

defined in (III.6) preserves the continent K and the Hamiltonian Hreplica(~σ).
For πK ∈ Sc

n(K),
Hreplica(~σ) = Hreplica(πK(~σ)) . (V.2)
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Proof. The action of Sc
n(K) on ~σ leaves invariant spins ~σi = (+1, . . . , +1),

so it changes neither the sea S(~σ) nor the definition of continents. Hence
it also does not change the contribution of nearest neighbor spins to the
energy either inside or outside the continent. The local permutation also does
not alter the energy across the island boundary, because all the components
outside the island have value +1 and are invariant under the permutation.

V.3 Symmetry Ensures Condensation

We now establish the property of condensation. We use the representation
(IV.13) for the truncated correlation function of n spins. We may choose any
γ with g.c.d.(n, γ) = 1, so for simplicity we consider the case γ = 1.

Proposition V.3 (Condensation). In the expectation ≪s
(1)
i1
· · · s(1)

in
≫Λ,β,

any configuration ~σ giving a nonzero contribution has all the sites i1, . . . , in ∈
K lying in a single continent K ∈ K(~σ).

Lemma V.4. Consider a given configuration ~σ and a continent K ∈ K(~σ)
containing at least one but not all the sites i1, . . . , in. Let πk

K denote πK

applied k times. Then

n−1
∑

k=0

(

πk
Ks

(1)
i1

)

· · ·
(

πk
Ks

(1)
in

)

e−βHreplica(πk

K
(~σ))

=

n−1
∑

k=0

s
(1)
i1

(

πk
K(~σ)

)

· · · s(1)
in

(

πk
K(~σ)

)

e−βHreplica(πk

K
(~σ))

= 0 . (V.3)

Proof. From Proposition V.2 we infer that the energy in the permuted con-
figuration is unchanged by the permutation,

Hreplica

(

πk
K(~σ)

)

= Hreplica(~σ) . (V.4)

Therefore, we only need consider the changes to the spins s
(1)
ik

. Let l =
|{k|ik ∈ K}| denote the number of sites i1, . . . , ik that lie in K; clearly 1 ≤

l < n. According to Proposition III.1, the application of πK to s
(1)
i gives a
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phase ω for i ∈ K. The sum equals

n−1
∑

k=0

ωkls
(1)
i1

s
(1)
i2
· · · s(1)

in e−βHreplica(~σ)

= s
(1)
i1

s
(1)
i2
· · · s(1)

in e−βHreplica(~σ)

n−1
∑

k=0

ωkl = 0 . (V.5)

Proof of Proposition V.3. The expectation is

≪s
(1)
i1
· · · s(1)

in
≫Λ,β =

∑

~σ

s
(1)
i1
· · · s(1)

in
e−βHreplica(~σ)/Z . (V.6)

If ~σ is a configuration where some site ik lies in the sea ik ∈ S(~σ) then the

spin has the value of the boundary, s
(1)
ik

= 0. We also have s
(1)
ik

= 0, if ik ∈ K

and all the σ(α) take the same values on K.
Therefore, the only contributing configurations have all the sites ik lying

in continents where πK actually yields new configurations. In this case, the
sum in Lemma V.4 is a sub-sum of (V.6). According to the lemma the sum
is only nonzero if all or none of the ik lie in the contintent K.

VI Contours and the Energy

VI.1 Contours for Vector Spins ~σ

For each component σ(α) of the vector spin, we can define contours in the
usual statistical mechanics sense. These contours are the boundaries between
islands with different values of σ(α), as defined in §II. They are subsets of
the lattice dual to Zd, consisting of (d− 1)-faces of d-cubes.

The ~σ contours are the direct sum of contours in the individual com-
ponents. In order to picture the boundaries of ~σ, we assign colors to the
different components, corresponding to the label α used above. We illustrate
these contours for a particular configuration in the case n = 2 in Figure 4(a)–
Figure 4(c).
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+

−

−

(a) The contours of σ(1)

+

+

−

−

(b) The contours of σ(2)

color 1

color 2

(c) The contours of ~σ

K1

K2

S(~σ)

(d) The set of continents
K(~σ) = {K1,K2}

color 1

color 2

(e) The continent contours
~C(K1, ~σ)

Figure 4: An illustration of contours and continents in the case n = 2.
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VI.2 Replica Continent Contours

Here we define appropriate replica continent contours ~C(K, ~σ) in order to
analyze the probability Pr(r) of the occurrence of configurations containing a

continent with a contour of length r. We do not define ~C as the boundary ∂K.
The problem is: while this boundary is a contour for ~σ, it is not necessarily
a contour for a component σ(α). Usually ∂K consists of segments of contours
of the components.

To estimate Pr(r) we use the relation between the configuration ~σ with the

replica continent contour ~C(K, ~σ) and a configuration ~σ∗ with the contour
removed. This transformation removes all the contours of the component
spins σ(α) that contribute to ∂K. With this motivation, we now give the
appropriate construction.

Definition VI.1. For K ∈ K(~σ) define the replica continent contour of K

in the configuration ~σ as the vector ~C(K, ~σ) with components

C(α)(K, ~σ) = union of contours C for σ(α) with |C ∩ ∂K| 6= 0 , (VI.1)

where | · | is the measure of (d − 1)-surfaces. This is the subset of contours
for ~σ meeting the boundary of the continent ∂K.

See the example in Figure 4(e). In a generic configuration, these con-
tours touch the boundary and penetrate arbitrarily into the interior of the
continent.

Several different configurations of the spin ~σ may have different contours,
but a common continent K. Define the set of possible contours for the con-
tinent K as

C(K) =
{

~C(K, ~σ) | where K ∈ K(~σ)
}

. (VI.2)

Finally, the length of any contour ~C ∈ C(K) is just the sum over the length
of the constituent contours,

∣

∣

∣

~C
∣

∣

∣
=

n
∑

α=1

∣

∣ C(α)
∣

∣ . (VI.3)

With these definitions it is obvious that removing ~C(K, ~σ) in the configu-
ration ~σ is well-defined. We just remove the respective contours C(α)(K, ~σ)
for the components σ(α), by flipping the sign of all the spins inside these
contours.
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Definition VI.2. For a configuration ~σ and a continent K ∈ K(~σ), write ~σ ∗

for the configuration where the contour ~C(K, ~σ) for the continent has been
removed as described above.

As a consequence of the removal of the replica continent contour the
energy Hreplica is decreased by two times the length of the removed contours.
This the generalization of the fact that for each component spin, the energy
is given by two times the total length of the contours,

Hreplica(~σ
∗) = Hreplica(~σ)− 2

∣

∣

∣

~C(K, ~σ)
∣

∣

∣
. (VI.4)

VII Counting Random Surfaces in R
d

In order to prove the tree decay we need an exponential bound on the number
of possible connected contours. These are surfaces in Rd composed of r faces,
each a unit (d− 1)-cube. We call these random surfaces and prove a bound
that holds for general connected unions of faces, as defined in §II. We also
use the term adjacent faces as in that section, to indicate that two faces share
a (d− 2)-dimensional cube.

Definition VII.1. Let N(r) denote the number of connected, random sur-
faces of dimension (d − 1), which contain exactly r faces, including a given
face S0.

Proposition VII.2. There is a constant a (independent of dimension) such
that for kd = a2d,

N(r) ≤ kr
d . (VII.1)

Proof. The idea of the proof is to map each connected surface onto a rooted
tree-graph, whose edges connect the centers of adjacent faces of the surface,
and which touches each face. We say that the graph covers the surface.
One then counts the number of possible surfaces that can correspond to one
graph. The product of the number of possible tree graphs, times the number
of surfaces per graph, gives our bound.

The tree graph will have length r and r− 1 edges; the root of the tree is
the center p1 of S0, see Figure 5. The first branch of the tree connects the
root p1 to the center p2 of a face adjacent to S0. From there we draw another
edge connecting to the center of a new adjacent face (but we do not return
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p1

p2 p3
p4

p5

p6

S0

p1

p2

p3 p4

p5

p6

Figure 5: A surface covered by a tree graph and the corresponding tree graph
rooted at the center of S0. To simplify the illustration, all the angles between
the faces are set to 180◦, while in general they may equal 90◦, 180◦, or 270◦.

to p1). If all the adjacent surface elements are already in the tree graph, we
cannot continue this branch. At this point we move in the reverse direction
along the branch, face by face, until we reach a face having an adjacent face
that is not yet covered by the tree. Starting at this place we start a new
branch. We continue in this manner until we cover the entire surface.

In this manner we assign at least one tree diagram to every connected
surface. This also means that every possible connected surface with r faces
can be constructed by choosing a tree graph and attaching new faces in the
order given by the tree structure. The number of planar tree graphs with
r − 1 edges is the Catalan number Cr−1, see example 6.19.e of Stanley [1].
Hence

Cr−1 =
1

r

(

2(r − 1)

r − 1

)

≤ (2e)r , (VII.2)

where the bound follows from the elementary inequality
(

v

w

)

≤
(ev

w

)w

. (VII.3)

An upper bound for the number of ways to add a single face as one builds
up the surface along the tree-graph is 2d−1 ·3. A face has 2d−1 sides to attach
an adjacent face, and every attachment can be done with one of the angles
90◦, 180◦, or 270◦. Therefore we infer the bound (VII.1) with a = 3e, namely

N(r) ≤ (2d−1 · 3)rCr−1

≤ (2d−1 · 3 · 2e)r = kr
d. (VII.4)
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VIII Tree Decay

In this section we prove the decay bound for the truncated correlation func-
tions. We base the proof on condensation. Starting from the representation
(IV.13), namely

≪s
(1)
i1
· · · s(1)

in
≫Λ,β = n−(n−2)/2〈σi1 · · ·σin〉

T
Λ,β , (VIII.1)

we use the fact established in Proposition V.3 that every non-vanishing con-
tribution contains a continent K with all the points i1, . . . , in.

Proposition VIII.1. There are constants a, b depending on d, but indepen-
dent of Λ, such that if 1 ≤ δ = β− b ln n (hence requiring β ≥ βn = O(lnn)),
then the truncated correlation functions satisfy

∣

∣〈σi1 · · ·σin〉
T
Λ,β

∣

∣ ≤ a nn e−δτ(i1,...,in) . (VIII.2)

Here τ(i1, . . . , in) is the length of the shortest tree connecting i1, . . . , in.

VIII.1 Outline of the Proof

We have shown in Proposition V.3 that each non-vanishing contribution to
the expectation (VIII.1) contains a condensate continent K containing all the

points i1, . . . , in. As a consequence, every possible replica contour ~C ∈ C(K)
has minimal length τ(i1, . . . , in).

We formulate the sum over configurations

〈σi1 · · ·σin〉
T
Λ,β = n(n−2)/2 1

Z

∑

~σ

si1 · · · sine−βHreplica(~σ) , (VIII.3)

as a sum over configurations with contours ~C of length r and a sum over
r. We claim that the probability Pr(r) that a replica contour ~C occurs with
∣

∣

∣

~C
∣

∣

∣
= r satisfies the bound

Pr(r) ≤ e−β|~C| = e−βr . (VIII.4)
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To complete the proof we use the entropy bound Proposition VII.2, along
with an estimate on the number of configurations that contain a given contour
~C. These estimates, together with the fact that

∣

∣

∣
s
(1)
i

∣

∣

∣
≤ n1/2, yield the desired

bound. We now break the proof into a sequence of elementary steps.

VIII.2 Details of the Proof

Rewrite the Sum: Consider the sum (VIII.3), with the restriction of

Proposition V.3. Recall that the replica continent borders ~C = ~C(K, ~σ), and

the set of configurations containing such a replica continent C(K) ∋ ~C(K, ~σ)
is given in Definition VI.1. One can rewrite the sum as an iterated sum,

∑

~σ

=

∞
∑

r=τ(i1,...,in)

′
∑

K, ~C

′′
∑

~σ

. (VIII.5)

For fixed K and ~C, the sum
∑′′ denotes the sum over configurations con-

taining the continent K ∈ K(~σ) with the continent border ~C = ~C(K, ~σ),

′′
∑

~σ

=
∑

~σ with K ∈ K(~σ) , ~C = ~C(K, ~σ)

. (VIII.6)

The sum
∑′ ranges over the possible continents K containing the n sites

i1, . . . , in, and their possible borders ~C of length
∣

∣

∣

~C
∣

∣

∣
= r. Thus

′
∑

K, ~C

=
∑

K⊃{i1,...,in}

∑

~C ∈ C(K)

with
˛

˛

˛

~C
˛

˛

˛
= r

. (VIII.7)

Finally we sum over r, which is bounded from below by the minimal size
τ(i1, . . . , in).

One interprets the sum
∑′′ as the energy contribution to the sum, namely

the probability

Pr(r) =
1

Z

′′
∑

e−βH(~σ) , (VIII.8)
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for the states ~σ with K ∈ K(~σ). Likewise one interprets the sum
∑′ as the

entropy contribution to the sum. Define the entropy factor N (r) by

N (r) =
′

∑

K, ~C

1 . (VIII.9)

The entropy counts the number of different shapes for ~C.

Using |σi| = 1, one has
∣

∣

∣
s
(1)
i

∣

∣

∣
≤ n1/2. Thus we obtain the bound

∣

∣〈σi1 · · ·σin〉
T
Λ,β

∣

∣ = n(n−2)/2
∣

∣

∣
≪s

(1)
i1
· · · s(1)

in
≫Λ,β

∣

∣

∣

≤ n(n−2)/2 1

Z

∞
∑

r=τ

′
∑

K, ~C

′′
∑

~σ

∣

∣

∣
s
(1)
i1
· · · s(1)

in

∣

∣

∣
e−βH(~σ)

≤ n(n−2)/2

∞
∑

r=τ

nn/2N (r) Pr(r)

= nn−1
∞

∑

r=τ

N (r) Pr(r) . (VIII.10)

In the following we prove bounds on Pr(r) and on N (r) that depend only on
r, on β, and on the dimension d.

Bound the Entropy: We show that there are constants A, B depending
only on d such that N (r) satisfies the exponential bound,

N (r) ≤ ABrnr . (VIII.11)

We obtain this result by constructing the border contour ∂K and at-
taching l colored sub-contours. In this way one constructs any possible ~C
satisfying the conditions above. The geometry of the contour (which must

surround i1) requires that the starting face we choose in constructing ~C must
lie in a cube of side-length (r − 1), centered at i1. Such a cube contains at
most drd possible starting faces.

Using Proposition VII.2, the number of possible border contours is less
than drdN(r) ≤ drdkr

d. We now build up the full contour ~C by attaching
at least one and at most r subcontours to ∂K to obtain the total number
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of faces r. This can be done in a number of ways. For l sub-contours, the
number of ways is bounded by the product of combinatorial factors:

rl for the starting faces on ∂K,
kr

d for the shapes,
nl for the colors,

(

r−1
l−1

)

for the lengths,

1/l! as the ordering of the subcontours is irrelevant.

Therefore

N (r) ≤ drdkr
d

r
∑

l=1

rlkr
dn

l

(

r − 1

l − 1

)

1

l!
. (VIII.12)

We use the elementary inequalities

rd ≤ d!er , and

(

r − 1

l − 1

)

≤ 2r . (VIII.13)

Then

N (r) ≤ drdk2r
d nr

r
∑

l=1

rl

l!

(

r − 1

l − 1

)

≤ dd!
(

2e2k2
d

)r
nr . (VIII.14)

This bound has the form (VIII.11) with A = dd! and B = 2e2k2
d.

Bound the Energy Factor: The energy bound has the form

Pr(r) ≤ e−βr, (VIII.15)

where K (implicitely contained in
∑′) is any fixed connected set with

{i1, . . . , in} ⊂ K and ~C ∈ C(K) is any fixed extended border with
∣

∣

∣

~C
∣

∣

∣
= r.

The idea is to compare every summand in the numerator to a summand in
the denominator. For any given ~σ with K ∈ K(~σ) and ~C(K, ~σ) = ~C, we

can take away the contours in ~C obtaining the unique ~σ∗ as described in
Definition VI.2. Because of the difference in energy this gives an additional
factor e−βr for the term in the numerator. As the procedure works for all the
summands, we infer

Pr(r) =

∑′′
~σ e−βH(~σ)

∑

~σ e−βH(~σ)
≤

∑′′
~σ e−βH(~σ∗)e−βr

∑′′
~σ e−βH(~σ∗)

= e−βr. (VIII.16)
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Tree Decay: The bound (VIII.2) now follows. Using (VIII.10), one has

∣

∣〈σi1 · · ·σin〉
T
Λ,β

∣

∣ ≤ nn−1
∞

∑

r=τ

N (r) Pr(r) ≤ nn−1
∞

∑

r=τ

ABrnre−βr

= nn−1A
∞

∑

r=τ

e−(β−b lnn)r , (VIII.17)

where b = ln B and where τ = τ(i1, . . . , in). The last sum converges for
β > b ln n. With 1 ≤ δn = β − b ln n, this gives

∣

∣〈σi1 · · ·σin〉
T
Λ,β

∣

∣ ≤ nn−1A(1− e−δn)−1 e−δnτ . (VIII.18)

As 1 ≤ δn, one can take

a = A (1− e−δn)−1 ≤ Ae(e− 1)−1 . (VIII.19)

This completes the proof of Proposition VIII.1. �
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